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Week 12

0.0.1 Taylor’s Theorem (contd.)

Taylor’s theorem says that if f is infinitely differentiable then

f(b) = f(a) + f (1)(a)(b− a) +
f (2)(a)

2!
(b− a)2 +

f (3)(a)
3!

(b− a)3 + · · ·+ f (n)(a)
n!

(b− a)n

+
∫ b

a

f (n+1)(x)
n!

(b− x)ndx

for all integers n ≥ 0.

The symbol b is frequently replaced by x when we want to empasize variability
of value. In order to avoid confusion, we then also have to also change the
variable of integration from x to t

And we write something like:

f(x) = f(a) + f (1)(a)(x− a) +
f (2)(a)

2!
(x− a)2 +

f (3)(a)
3!

(x− a)3 + · · ·+ f (n)(a)
n!

(x− a)n

+
∫ x

a

f (n+1)(t)
n!

(x− t)ndt

The integral term
∫ x

a

f (n+1)(t)
n!

(b− t)ndt is often denoted as Rn and is known

as the Remainder Term..
The sum

f(a)+f (1)(a)(b−a)+
f (2)(a)

2!
(x−a)2 +

f (3)(a)
3!

(x−a)3 + · · ·+ f (n)(a)
n!

(x−a)n

is clearly a polynomial and is known as the Taylor polynomial for f around a.
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Taylor’s Theorem can be exploited to approximate a function by a polynomial
because in many cases the remainder term Rn becomes smaller as n gets big-
ger. This is because it has the factor (n+1)! in the denominator becames large
quickly as n gets bigger.

The infinite series

f(a)+f (1)(a)(x−a)+
f (2)(a)

2!
(x−a)2 +

f (3)(a)
3!

(x−a)3 +
f (4)(a)

4!
(x−a)4 + . . .

is known as the Taylor expansion of f around a.
Whether or not this series converges to f(x) depends on whether the term Rn

has limit 0 or not as n →∞.

Example 0.1

Let f(x) = ex and a = 0. Then
f(x) = ex ⇒ f(0) = 1
f (1)(x) = ex ⇒ f (1)(0) = 1
f (2)(x) = ex ⇒ f (2)(0) = 1
etc. etc. etc.

Therefore Taylor’s theorem tells us that

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+

∫ x

0

et

n!
(x− t)ndt.

It is easy to show that the remainder term Rn =
∫ x

0

et

n!
(x− t)ndt has limit 0

as n →∞ and so the series

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . .

converges to ex. This is sometimes written as

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . .

Because of this convergence, the Taylor polynomial

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!

will approximate the value of ex with arbitrary precision as n gets larger.
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It is easy to show that the remainder term Rn =
∫ x

0

et

n!
(x− t)ndt has limit 0

as n →∞ and so the series

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . .

converges to ex. This is sometimes written as

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ . . .

Because of this convergence, the Taylor polynomial

1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ · · ·+ xn

n!

will approximate the value of ex with arbitrary precision as n gets larger.

Example 0.2

Let f(x) =
1

1− x
= (1− x)−1 and a = 0. Then

f(x) = (1− x)−1 ⇒ f(0) = 1
f (1)(x) = (1− x)−2 ⇒ f (1)(0) = 1
f (2)(x) = 2(1− x)−3 ⇒ f (2)(0) = 2
f (3)(x) = 3.2(1− x)−4 ⇒ f (3)(0) = 3.2
f (4)(x) = 4.3.2(1− x)−5 ⇒ f (4)(0) = 4!
etc. etc. etc.

Therefore Taylor’s theorem tells us that

1
1− x

= 1 + x + x2 + x3 + · · ·+ xn +
∫ x

0

n!(1− t)−(n+1)

n!
(x− t)ndt.

= 1 + x + x2 + x3 + · · ·+ xn +
∫ x

0

(x− t)n

(1− t)n+1
dt.

In this case we don’t need to examine the remainder term because we can
recognise the series

1 + x + x2 + x3 + x4 + . . .

as a geometric series with r = x and we already know that this series only

converges when |x| < 1 and that in this case it converges to
1

1− x
.


