Pat O'Sullivan

Mh4714 Week 12

Week 12

0.0.1 Taylor's Theorem (contd.)

Taylor's theorem says that if f is infinitely differentiable then

$$
\begin{aligned}
f(b)=f(a)+f^{(1)}(a)(b-a)+\frac{f^{(2)}(a)}{2!}(b-a)^{2}+\frac{f^{(3)}(a)}{3!}(b-a)^{3} & +\cdots+\frac{f^{(n)}(a)}{n!}(b-a)^{n} \\
& +\int_{a}^{b} \frac{f^{(n+1)}(x)}{n!}(b-x)^{n} \mathrm{~d} x
\end{aligned}
$$

for all integers $n \geq 0$.

The symbol b is frequently replaced by x when we want to empasize variability of value. In order to avoid confusion, we then also have to also change the variable of integration from x to t
And we write something like:

$$
\begin{aligned}
f(x)=f(a)+f^{(1)}(a)(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3} & +\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& +\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} \mathrm{~d} t
\end{aligned}
$$

The integral term $\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!}(b-t)^{n} \mathrm{~d} t$ is often denoted as R_{n} and is known as the Remainder Term..
The sum
$f(a)+f^{(1)}(a)(b-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$
is clearly a polynomial and is known as the Taylor polynomial for f around a.

Taylor's Theorem can be exploited to approximate a function by a polynomial because in many cases the remainder term R_{n} becomes smaller as n gets bigger. This is because it has the factor $(n+1)$! in the denominator becames large quickly as n gets bigger.

The infinite series
$f(a)+f^{(1)}(a)(x-a)+\frac{f^{(2)}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\frac{f^{(4)}(a)}{4!}(x-a)^{4}+\ldots$
is known as the Taylor expansion of f around a.
Whether or not this series converges to $f(x)$ depends on whether the term R_{n} has limit 0 or not as $n \rightarrow \infty$.

Example 0.1

Let $f(x)=e^{x}$ and $a=0$. Then
$f(x)=e^{x} \Rightarrow f(0)=1$
$f^{(1)}(x)=e^{x} \Rightarrow f^{(1)}(0)=1$
$f^{(2)}(x)=e^{x} \Rightarrow f^{(2)}(0)=1$
etc. etc. etc.

Therefore Taylor's theorem tells us that

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+\int_{0}^{x} \frac{e^{t}}{n!}(x-t)^{n} \mathrm{~d} t
$$

It is easy to show that the remainder term $R_{n}=\int_{0}^{x} \frac{e^{t}}{n!}(x-t)^{n} \mathrm{~d} t$ has limit 0 as $n \rightarrow \infty$ and so the series

$$
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

converges to e^{x}. This is sometimes written as

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

Because of this convergence, the Taylor polynomial

$$
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!}
$$

will approximate the value of e^{x} with arbitrary precision as n gets larger.

It is easy to show that the remainder term $R_{n}=\int_{0}^{x} \frac{e^{t}}{n!}(x-t)^{n} \mathrm{~d} t$ has limit 0 as $n \rightarrow \infty$ and so the series

$$
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

converges to e^{x}. This is sometimes written as

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots
$$

Because of this convergence, the Taylor polynomial

$$
1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots+\frac{x^{n}}{n!}
$$

will approximate the value of e^{x} with arbitrary precision as n gets larger.

Example 0.2

Let $f(x)=\frac{1}{1-x}=(1-x)^{-1}$ and $a=0$. Then
$f(x)=(1-x)^{-1} \Rightarrow f(0)=1$
$f^{(1)}(x)=(1-x)^{-2} \Rightarrow f^{(1)}(0)=1$
$f^{(2)}(x)=2(1-x)^{-3} \Rightarrow f^{(2)}(0)=2$
$f^{(3)}(x)=3.2(1-x)^{-4} \Rightarrow f^{(3)}(0)=3.2$
$f^{(4)}(x)=4.3 .2(1-x)^{-5} \Rightarrow f^{(4)}(0)=4$!
etc. etc. etc.

Therefore Taylor's theorem tells us that

$$
\begin{aligned}
\frac{1}{1-x}= & 1+x+x^{2}+x^{3}+\cdots+x^{n}+\int_{0}^{x} \frac{n!(1-t)^{-(n+1)}}{n!}(x-t)^{n} \mathrm{~d} t \\
& =1+x+x^{2}+x^{3}+\cdots+x^{n}+\int_{0}^{x} \frac{(x-t)^{n}}{(1-t)^{n+1}} \mathrm{~d} t
\end{aligned}
$$

In this case we don't need to examine the remainder term because we can recognise the series

$$
1+x+x^{2}+x^{3}+x^{4}+\ldots
$$

as a geometric series with $r=x$ and we already know that this series only converges when $|x|<1$ and that in this case it converges to $\frac{1}{1-x}$.

